
Predicting Protein Functions From Interactions Using

Neural Networks and Ontologies

Thesis by

Shahad Qathan

In Partial Fulfillment of the Requirements

For the Degree of

Masters of Science

King Abdullah University of Science and Technology

Thuwal, Kingdom of Saudi Arabia

©November, 2022

Shahad Qathan

All rights reserved

https://orcid.org/0000-0001-2345-6789

https://orcid.org/0000-0001-2345-6789

2

ABSTRACT

Predicting Protein Functions From Interactions Using Neural

Networks and Ontologies.

Shahad Qathan

To understand the process of life, it is crucial for us to study proteins and

their functions. Proteins execute (almost) all cellular activities and their func-

tions are standardized by Gene Ontology (GO). The amount of discovered pro-

tein sequences grows rapidly as a consequence of the fast rate of development of

technologies in gene sequencing. In UniProKB, there are more than 200 million

proteins. Still, less than 1% of the proteins in the UniProtKB database are exper-

imentally GO-annotated, which is the result of the exorbitant cost of biological

experiments. To minimize the large gap, developing an efficient and effective

method for automatic protein function prediction (AFP) is important.

Many approaches have been proposed to solve the AFP problem, but these

methods suffer from limitations in the way the knowledge of the domain is pre-

sented and what type of knowledge is included. In this work, we formulate the

task of AFP as an entailment problem and exploit the structure of the related

knowledge in a set and reusable framework. To achieve this goal, we construct a

knowledge base of formal GO axioms and protein-protein interactions to use as

background knowledge for AFP. Our experiments show that the approach pro-

posed here, which allows for ontology awareness, improves results for AFP of

proteins, they also show the importance of including protein-protein interactions

for predicting functions of proteins.

3

ACKNOWLEDGEMENTS

I want to thank Dr. Robert Hoehndorf, the committee, Dr. Mikhail Moshkov,

Dr. Stefan Arold, and the members of the Bio-Ontolgy Research Group for their

help and support. Many thanks to my dear family for being there for me during

this journey, especially my lovely cat Matas for being kind and understanding

about changing my mind on crediting him in my work; I hope this acknowledg-

ment will do. You are a fine specimen of a feline.

4

TABLE OF CONTENTS

Abstract 2

Acknowledgements 3

List of Abbreviations 5

List of Figures 6

List of Tables 7

1 Introduction 8

2 Background 10

3 Related Work 12

3.1 AFP with no ontology awareness 12

3.2 AFP with ontology awareness . 13

4 Materials and Methods 15

4.1 Problem formulation . 15

4.1.1 Basic definitions . 16

4.2 Embedding ontologies . 17

4.3 Overview . 24

4.4 Performance evaluation . 25

4.5 Model training settings . 26

4.6 Complexity . 27

5 Results and Discussion 29

5.1 Hyperparameters analysis . 32

6 Concluding Remarks 33

References 35

5

LIST OF ABBREVIATIONS

AFP Automatic Function Prediction

BP Biological Processes

CC Cellular Component

DLs Description Logics

GCN Graph Convolutional Network

GNN Graph Neural Network

GO Gene Ontology

KRR Knowledge Representation and Reasoning

MF Molecular Function

RGCN Relational Graph Convolutional Network

6

LIST OF FIGURES

4.1 Four relative positions between sphere si and sj 19

4.2 high-level overview of our proposed method. 28

5.1 The performance slightly improves after increasing embedding di-

mensions . 32

7

LIST OF TABLES

5.1 Comparison of performance against graph-based embedding ap-

proaches . 31

5.2 Comparison of proposed methods against DeepGraphGO 31

5.3 Comparison of proposed methods against DeepGOZero 31

5.4 Comparison of performance of GCN and RGCN in proposed method 32

Chapter 1

Introduction

To understand the process of life, it is crucial for us to study proteins and their

functions. Proteins execute (almost) all cellular activities and their functions are

standardized by Gene Ontology (GO) with over 44000 classes. The amount of dis-

covered protein sequences grows exponentially due to the fast rate of development

technologies in gene sequencing.

Currently, more than 200 million of sequenced proteins are available in the

UniProtKB/TrEMB database [1]. Nevertheless, the growth in the number of

known sequenced proteins does not extend the biological knowledge we have,

because about 1% of the sequenced proteins have a manually-annotated GO

function. Additionally, the functional annotation of these sequenced a crucial

step for us to understand the biological processes and systems in organisms, it

is also one of the most challenging and complex problems in biology, hence why

there is a need to develop an efficient and effective an automated protein function

prediction (AFP) method.

Many approaches have been proposed for solving the AFP problem. These

different strategies can be split into two groups: methods aware of the ontology

and methods unaware of the full structure of GO. In this work, we propose a

method that aims to some of the main challenges in protein function prediction:

predicting functions with strong dependencies in a hierarchical output space, the

majority of proteins are not annotated and do not have any known functions, and

the challenge of combining information about proteins from different sources. In

this approach, the protein function prediction problem is formulated as an en-

tailment problem using Description Logics. The proposed approach allows for

9

exploitation of both the graph and ontology parts of the knowledge base, thus

gaining ontology awareness, to improve the task of protein function prediction,

even for classes in GO that only have a few or absolutely no experimental anno-

tations.

Specifically, the contributions in this thesis are as follows:

• Formulate the protein function prediction problem as an entailment prob-

lem.

• Construct a knowledge base of formal GO axioms and protein-protein in-

teractions to use as background knowledge for AFP.

• Incorporate graph-based and model-theoretic ontology embedding approaches

in the same method.

Chapter 2

Background

The ability to compactly describe data in a specific domain of interest whilst also

extracting implicit information of this representation has been one of the main

goals of Artificial Intelligence research since its inception. This area of Artificial

Intelligence research is called Knowledge Representation and Reasoning (KRR)

Description Logics (DLs) appeared within KRR research by expanding on

the taxonomic/structured arrangement of a terminology of a specific domain of

interest and giving it a clear, logic-based semantics, first adopted from early

network-based approaches, where concepts or classes are interpreted as unary

predicates, and relations connecting classes as binary predicates, and more com-

plex expressions can be expressed with logic based constructors inductively. In

order for these concepts to be understood, constrains need to be stated in DLs.

These constraints can also be utilized to infer their consequences. This is ad-

vantageous since the problem is constrained by such knowledge, which can also

narrow the search space.

Ontologies, which can be defined as explicit and formal specifications of do-

mains of interest, are comprised of terms expressing precisely defined entities and

their interactions. Ontologies are increasingly utilized to define the fundamental

concepts and relationships in biological domains, frequently as the basis for data

search, integration, and exchange.

Ontologies are utilized as background knowledge in the life sciences since they

contain significant information on the entities of the domain, their relationships,

and even textual data as comments or definitions. Moreover, ontologies contain

information in the form of logical axioms. Such axioms define the domain in

11

a formal manner. Methods that utilize ontologies exploit their information by

acquiring embeddings of the entities of interest.

Gene Ontology (GO) [2] is one of biology’s most prominent ontologies. It is

used to characterize the genes/proteins of several species by providing concepts/-

classes for describing gene activities and their interactions. The objective of this

ontology is to transfer the knowledge from well-studied organisms to the lesser

or even inaccessible organisms. GO is made up of three primary sub-ontologies:

Cellular Component (CC) and Molecular Function (MF) and Biological Processes

(BP). CC ontology contains terminology for describing active gene product loca-

tions. MF is intended to describe gene product activities. And the BP ontology

comprises gene and gene product-contributing processes.

Chapter 3

Related Work

Proteins are the fundamental components of all biological systems, and in order

to comprehend the biological system and its molecular behavior, it is vital to

comprehend the activities of the proteins. The Gene Ontology (GO) [2] is the

most extensive and commonly used database for protein function annotations.

It consists of approximately 44,000 classes and a huge number of formal axioms.

In the vast, complex, imbalanced, and hierarchical space of biological functions,

it continues to be challenging to predict all the true protein functions functions

using GO.

Many methods have been used to solve the protein function prediction prob-

lem. These methods can be split into two groups: methods aware of the full

structure of GO and methods unaware of the GO hierarchy and their other de-

pendencies which predict protein functions flatly.

3.1 AFP with no ontology awareness

DeepGOPlus [3] predicts functions of proteins from sequence alone by incorpo-

rating Convolutional Neural Networks, which is a deep learning neural network

used for processing structured data, with predictions based on sequence similar-

ity. The CNN model they use analyzes motifs sequences, which are predictive

for protein functions, then incorporates it with the functions of related or similar

proteins if any are known.

DeepGraphGO is an end-to-end technique for AFP based on graph neural

networks. DeepGraphGO tackles two major limitations: a predictive model has

to be trained for each type of species, and that the sequences of proteins, which

13

offers so much valuable information about what the protein does, is completely

disregarded in such models. This method overcomes these constraints by propos-

ing a multispecies graph neural network-based solution for AFP that exploits

sequences of proteins and complex protein-protein interaction information. Their

multispecies approach permits the training of a single model for all species, show-

ing a greater number of training examples than prior methods.

In summary, DeepGraphGO has three notable characteristics: (i) the use

of InterPro for vector representation: The input of GNN-trained representation

vectors (of nodes/proteins) is derived from InterPro, a database of protein do-

main and family information [4]. It incorporates 14 distinct databases, such as

SUPERFAMILY [5], , Pfam [6] CATH-Gene3D [7] and CDD [8], which contain

numerous forms of functional information, including family, domain, and motif.

(ii) Multiple Graph Convolutional Network (GCN) layers: GNN has been de-

veloped for various purposes, including node classification, link prediction, node

embedding, and graph classification [9]. Graph Convolutional Network (GCN) is

an example of a classic GNN. By aggregating the representations of neighboring

nodes, a graph convolutional layer (GCN layer) may generate a representation

vector for each node. Multiple GCN layers permit the capturing of complex ,high-

order data between nodes (proteins). (iii) Multispecies strategy: proteins from

all species were used to train a single model; this is referred to as the multispecies

strategy. Compared to prior work that focused on a single species, this method

can utilize more data to achieve higher performance, particularly for species with

sparse annotations.

3.2 AFP with ontology awareness

An example of a model that has ontology awareness is DeepGOZero [10], which

seeks to improve the prediction of protein functions through the use of the back-

ground information included in the Description Logic axioms of GO. Their claim

is that ontology axioms would add valuable information and allow for prediction

14

of functional annotations for ontology terms without training samples (zero-shot)

by merging neural and symbolic AI approaches into a single model [11]. GO

classes are formally-constrained by GO axioms [2]

DeepGOZero starts by utilizing EL Embeddings, which use the geometric on-

tology embedding method [12] to generate a n-dimensional space in which GO

classes are n-spheres, and the size and location of the n-spheres is constrained by

the axioms in GO. Only during the training phase of the model are the ontology

axioms used to build the space constrained by axioms of GO. Then, a neural net-

work is employed to project proteins in the same n-dimensional space in which

the GO classes were projected to predict the functions of proteins based on how

close they are and relation to GO classes. as input, DeepGOZero uses a binary

vector of InterPro annotations [4] for proteins. the Multi-layer Perceptron lay-

ers transform the interPro annotations binary vector into an embedding vector.

Next, DeepGOZero reduces both the protein functions’ prediction loss and EL

Embeddings loss which constrain the classes. The main limitation with Deep-

GOZero is that it does not incorporate any network information, thus it suffers

from lacking the systems biology perspective.

Chapter 4

Materials and Methods

4.1 Problem formulation

Proteins catalyze metabolic events, replicate DNA, respond to stimuli, provide

cells and organisms structure, transport chemicals from one area to another, and

many other important functions in all organisms. Which is why understanding

protein function is a fundamental problem in biology. Despite its importance, the

number of annotated protein functions falls behind* compared to the rapid in-

crease of newly discovered protein sequences. For example, the UniProt database,

the most exhaustive collection of functional annotations and protein sequence, has

only < 1% of its proteins annotated.

Gene Ontology (GO), a vast ontology containing more than 44,000 classi-

fications of protein functions, is used to define the protein functions through

the ontology classes. It includes the Biological Processes Ontology, the Cellular

Component Ontology, and the Molecular Function Ontology. The relationships

between the classes within those three sub-ontologies of GO are formally estab-

lished and must be considered when utilizing them in prediction tasks. Many

of the classes of GO have not yet been assigned to any protein, and very few

proteins have been assigned a specific function (less than < 1%). This makes the

task of training a machine learning model to predict functions with the few or

complete absence of annotations very difficult.

There are two main challenges in predicting protein functions, first one is

building an efficient computational model that is good at utilizing different types

of protein-related knowledge, such as the protein structure, sequence, or even

16

protein-protein interactions. The other challenge is to predict the right set of

functions in the complex, vast, hierarchical and unbalanced space of protein func-

tions as described by GO [10].

Typically, a protein participates in various biological processes, carries out

various functions, and is annotated with one or more GO classes concurrently.

Therefore, the task of predicting protein function can be viewed as a multi-class,

multi-label learning task. Existing multi-label multi-class function prediction

methods suffer from the problem of insufficient annotations and a huge number

of candidate GO classes due to a large amount of unverified GO annotation of

proteins.

4.1.1 Basic definitions

I firstly formulate the protein function predication problem as a logic problem

using description logic, then solve it in the embedding space. For this onotology,

in order to present proteins, their functions, and interactions. We propose com-

bining GO axioms with knowledge about proteins, their interactions, and their

annotations extracted different data sources. The main goal of this is to find the

best way to represent this knowledge which covers an arguably large domain.

I adopted the following representation: let O = (C, I, R, Ax) be an ontology,

where:

• The set C represents classes in the ontology. I choose all 43329 GO classes

for this set.

• the set I represents instances. I choose all 67592464 proteins on STRING

Database including all 14094 organisms.

• the set R represent the types of relations that exist in O. The first 6 are

relations that may occur between instances of proteins, and the last 2 oc-

cur between GO classes. {activates, reacts, binds, expressed by, catalysis,

ptmod, regulates, part of }

17

• the set Ax includes the following types of axioms:

1. ?GO term1 ⊑ ?GO term

2. ?GO term ⊑ ∃ regulates.?GO term

3. ?GO term ⊑ ∃ part of.?GO term

4. (∃ located in. ?CC) (a)

5. (∃ has function. ?MF) (a)

6. (∃ participates in. ?BP) (a)

7. interacts with2 (a, b)

The knowledge base of O consists of the TBox and Abox. the TBox is

represented by the first 3 axioms, which are generalized concept assertion ax-

ioms downloaded from GO released on 2021-11-16. The following 3 are con-

cept assertion axioms extracted from GO annotated proteins sourced from the

UniProt/SwissProt Knowledgebase (UniProtKB-SwissProt)[1] version 2022 02.

The UniProtKB-SwissProt database contains proteins from approximately 2,000

distinct species. These 3 axioms also represent what we want to predict in the

context of protein function prediction and what connects the TBox and ABox in

O. The last axiom is of the role assertion type, which represents the ABox and is

sourced from STRING Database version 9.1 [13].

4.2 Embedding ontologies

Representation learning approaches are used to account for all knowledge stored

in ontologies by classes in the ontology to a continuous representation, also known

as an embedding. This is done so that the ontology is embedded in a continues

space that allows the execution of computational operations on the ontology

information in distributed vector space.

1?GO term can be either ?CC GO, ?BP GO, or ?MF GO
2interacts with can be any of the relations in the set R

18

An embedding is a mapping that preserves the structure of one mathematical

system to another. In this context, embeddings accept items (individuals, classes,

properties) from an ontology and produce a numerical representation in Rn. The

size of the embedding is denoted by n. A formal definition of an embedding is:

Definition 1. Let O = (Σ = (I, R, C); ax;⊢) be an ontology with I as a set of

instances, R as a set of relations, C as a set of classes, ax as a set of axioms

and an inference relation ⊢. the following function is an ontology embedding

fη : I ∪R ∪ C 7→ Rn.

Methods to embed ontologies can be categorized into two main types de-

pending on the type of information from the ontology is utilized; graph-based

methods, which are best suited for exploiting the ABox part of the knowledge

base. And semantic-based models, which are better at exploiting the TBox part

of the knowledge base.

• Graph-based embedding methods allow capturing of the structural in-

formation of the ontology entities, such as Translational embeddings meth-

ods, like TransE, TransC and GCN, which can preserve the graph structure

directly via vector operations, but they cannot always represent axioms like

symmetry, reflexivity, or transitivity of relations.

The main challenge in representing axioms graphically is that it is just not

possible for all types of axioms, which leads to information loss, this is the

major limitation in the graph-based model.

TransE considers a relation, denoted as r, as a translation from head, de-

noted as h, to tail, denoted as t, for a triple (h, r, t) in the set of training

triples. The embedding vector satisfies the following: h + r ≈ t. Conse-

quently, t ought to be the closest neighbor of r+h, while the loss function

is calculated as

fr(h, t) = ∥h+ r − t∥22 (4.1)

19

This graph-based method is suitable for 1-to-1 relations, but cannot handle

N-to-1, 1-to-N, or N-to-N types of relations.

TransC [14] instead of embedding classes as points, TransC embeds classes

as regions within Rn. The loss functions in TransC are designed to preserve

the is a transitivity. The formulations of their method is described in the

orginal work as follows:

Definition 2. A Knowledge Graph (KG) describes instances, re-

lations between instances, and classes. It can be expressed as KG

= {I, C, R, S}. I and C denote the sets of instances and classes

respectively. R, the set of relations, can be formalized as R = {re,

rc} ∪ Rl, where re is an instanceOf relation, rc is a subClassOf

relation, and Rl is the instance relation set.

Figure 4.1: Four relative positions between sphere si and sj .

Given knowledge graph KG, knowledge graph embedding with

concepts and instances aims at learning embeddings for instances,

concepts, and relations in the same space Rn. For each concept c

∈ C, a sphere s(p, m) is learned with p ∈ Rn and m denoting the

sphere center and radius. For each instance i ∈ I and instance

relation r ∈ Rn a low-dimensional vector is learned with i ∈ Rn

and r ∈ Rn respectively. Specifically, the instanceOf and sub-

ClassOf representations are well-designed so that the transitivity

20

of isA relations can be reserved.

for each type of the 3 triples, the loss function is calculated as

follows:

– InstanceOf Triple Representation. For a given instanceOf

triple (i, re, c), if it is a true triple, i should be inside the

sphere s to represent the instanceOf relation between them.

If i is outside the sphere s, the embeddings would need to be

optimized. The loss function that achieves this is defined as

fe(i, c) = ||i− p||2 −m. (4.2)

– Relational Triple Representation. For a relational triple (h,

r, t), TransC will learn low dimensional vectors h, t, r ∈ Rn

for instances and relations. Just like TransE (Bordes et al.,

2013), the loss function of this kind of triples is defined as

fr(h, t) = ||h+ r − t||22 (4.3)

– SubClassOf Triple Representation. For a subClassOf triple

(ci, rc, cj) concepts ci, cj are encoded as spheres si(pi,mi)

and sj(pj,mj). The distance between the centers of the two

spheres is first calculated as

d = ||pi − pj||2 (4.4)

If (ci, rc, cj) is a true triple, sphere si should be inside sphere

sj Figure 5.1a to represent the subClassOf relation between

them. Actually, there are three other relative positions be-

tween sphere si and sj (as shown in Figure 5.1). We also

have three loss functions under these three conditions:

21

1. si is separate from sj (Figure 5.1b). The embeddings still

need to be optimized. In this condition, the two spheres

need to get closer in optimization. Therefore, the loss

function is defined as

fc(ci, cj) = ||pi − pj||2 +mi −mj. (4.5)

– si intersects with sj (Figure 5.1c). This condition is similar

to condition 1. The loss function is defined as

fc(ci, cj) = ||pi − pj||2 +mi −mj. (4.6)

– sj is inside si (Figure 5.1d). It is different from the target

and mj should be reduced with mi increased. Hence, the loss

function is

fc(ci, cj) = mi −mj[14] (4.7)

Graph Convolutional Networks

The Graph Convolutional Networks (GCN) methods define the convolution

operation of the graph by message passing through the its edges. They

are heavily influenced by convolutional neural networks, which consider the

spatial structure of the input grid-structured data. CNNs can only operate

on Euclidean structured data, whereas GCNs are a generalized version of

CNNs in which the number of node connections varies and the nodes are

not ordered.

The GCN [15] is type of layer which inputs a set of vectors that represent

vertices, Incorporated with the structure of the full graph and outputs new

set of representations for vertices of the graph. A directed graph is denoted

as G = (V ; E), with set V being of vertices of the graph and ⟨i, i⟩ ∈ E being

22

the set of directed edges between two vertices, pointing from vertex i to j.

The following equation demonstrates the message passing of GCN for an

undirected graph in a single layer, G.

H = σ(AXW) (4.8)

Where X represents the matrix of vertex features, W is the matrix of weight

parameters, and σ is the non-linear activation function. A is generated by

the normalization of the adjacency matrix of the graph G. Normalization

guarantees that the magnitude of the vectors of vertex features does not

significantly change during the message-passing step.

Relational Convolutional Networks are an extension of GCN which is

used for multi-relational graphs. They allow for the basic message passing to

be extended to Knowledge Graphs (KG) By taking into account each edge’

direction and handling message-passing for each relation independently. A

KG, which is a directed graph, is denoted as G = (V ; E ;R), where R rep-

resents the set of relations and ⟨s, r, o⟩ ∈ E is a set of triples representing

that an instance (head) s and an instance (tail) o are connected by relation

r ∈ R. The following equation is an extension of the GNN message passing

rule as descibed in the original paper [16] and in [17].

H = σ
(R∑

r=1

ArXWr

)
(4.9)

where R is the number of relations, Ar is an adjacency ma-

trix describing the edge connection for a given relation r and Wr

is a relation-specific weight matrix. The extended message pass-

ing rule denotes how the information should be mixed together

with neighboring nodes in a relational graph. In the message

passing step, the embedding is summed over the different re-

lations. With the message passing rule discussed thus far, the

23

problem is that for a given triple ⟨s, r, o⟩ a message is passed

from s to o, but not from o to s. For instance, for the triple

⟨protein1, interactswith, protein2⟩ it would be desirable to up-

date both protein 1 with information from The protein 2, and

protein 2 with information from protein 1, while modelling the

two directions as meaning different things. To allow the model to

pass messages in two directions, the graph is amended inside the

RGCN layer by including inverse edges: for each existing edge

⟨s, r, o⟩ a new edge ⟨o, r′, s⟩ is added where r′ is a new relation

representing the inverse of r. A second problem with the naive

implementation of the (R)GCN is that the output representa-

tion for a node i does not retain any of the information from

the input representation. To allow such information to be re-

tained, a self-loop ⟨s, rs, s⟩ is added to each node, where rs is

a new relation that expresses identity. Altogether, if the input

graph contains R relations, the amended graph contains 2R + 1

relations: R+ = R ∪R′ ∪Rs

• The second approach we are considering for generating embeddings is a

model-semantic approach. This type of method represents the actual in-

terpretation of the symbols and exploit the TBox part of the knowledge

base. An example of a method of this type is EL Embeddings, which aim

to embed ontologies as n-sphers, and the relationships between entities is

represented by relations of intersection or inclusion between those spheres.

The binary crossentropy loss between the true labels and predicted labels is

calculated, then optimized together with four normal form losses for ontol-

ogy axioms from EL Embeddings. Adam optimizer [18] is used to minimize

the following loss function as described in the orginial work [12]:

24

L =
1

N

N∑
i=1

BCELoss(yci , y
′
ci
) + LNF1 + LNF2 + LNF3 + LNF4

(4.10)

EL Embeddings use normalized axioms in the following four

different forms:

– NF1 : C ⊑ D

– NF2 : C ⊓D ⊑ E

– NF3 : C ⊑ ∃ R.D

– NF4 : ∃R.C ⊑ D

where C, D, E represent classes and R represents relations in the

ontology. We convert the GO axioms into these four normal forms

using a set of conversion rules

4.3 Overview

Figure 4.2 shows a high-level overview of our proposed method. The goal of

this approach is to predict protein functions while utilizing the axioms in GO.

Specifically, a n-dimensional space is generated where go classes are represented

as n-spheres, having the size and location of each sphere constrained by axioms

in GO. Then, GCN is used to project proteins in the same n-dimensional space

where GO classes are embedded. Function prediction will depend on proteins and

their relations and proximity to GO classes. In the proposed method, InterPro

annotations [4] are used as feature vectors for each protein. The binary vector

of InterPro domain annotations is processed by the GCN layer to generate an

embedding vector. Then, it minimizes the loss of protein function prections and

the EL Embeddings/TransC loss at the same time.

25

4.4 Performance evaluation

the model performance is evaluated using the measurements previously used in

CAFA challenge [19]. The first performance measurement is a protein centric

F-measure. Where the F-measure is calculated for a threshold t ∈ [0, 1] with the

averaged precision for proteins that have at least one predicted term and also the

averaged recall for all proteins. Next, the maximum F-measure of all threshold

values between [0, 1] is selected. Fmax measure is computed with the following

formulas:

pri(t) =

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)∑

f I(f ∈ Pi(t))
(4.11)

rci(t) =

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti))∑

f I(f ∈ Ti)
(4.12)

AvgPr(t) =
1

m(t)
·

m∑
i=1

(t)pri(t) (4.13)

AvgRc(t) =
1

n
·

n∑
i=1

rci(t) (4.14)

Fmax = max
t

{
2 · AvgPr(t) · AvgRc(t)

AvgPr(t) + AvgRc(t)

}
(4.15)

where f is GO class, Pi(t) is a set of predicted classes for a protein i using

a threshold t, and Ti is a set of annotated classes for a protein i. The average

precision is computed over the proteins that got one or more predicted terms,

m(t) represents the number of such proteins. and n represents the number of the

total proteins in the test set.

Smin computes the semantic distance between predicted and real annotations

based on information content (IC) of the classes. The IC(c) is computed using

the class c’s label probability:

26

IC(c) = − log(Pr(c|P (c))) (4.16)

where P(c) is a set of parent classes of the class c. The Smin is computed

using the following formulas:

Smin = mint

√
ru(t)2 +mi(t)2 (4.17)

where mi(t) is average amount of misinformation and ru(t) is the average

remaining uncertainty :

ru(t) =
1

n

n∑
i=1

∑
c∈Ti−Pi(t)

IC(c) (4.18)

mi(t) =
1

n

n∑
i=1

∑
c∈Pi(t)−Ti

IC(c) (4.19)

4.5 Model training settings

To train our prediction models on this dataset and ensure that it generalizes well

to novel proteins, we use the same split used in DeepGOZero [10]. The split

is done before the generation of the knowledge base, this is because we want to

measure how well the method is at predicting proteins and GO terms it has never

came across in training. The split is described in the orginial work as follows:

we split the proteins into training, validation and testing sets. If

we split proteins randomly, the generated dataset splits will contain

proteins that are very similar or almost identical. Using such datasets

in machine learning may lead to an overfitting problem and the pre-

diction models will not generalize well (Tetko et al., 1995). Therefore,

we group the proteins by their similarity before generating a random

split. We place proteins with sequence identity over 50% into the same

groups and used 81% of the groups for training, 9% for validation and

10% for testing.

27

Also, each of the GO sub-ontologies is trained and evaluated separately, and

the training utilizes data of all species (multispecies). Additionally, mini-batch

training is used, since GraphSAGE showed a better generalized performance [20],

instead of full-batch training in [15]. The effectiveness of mini-batch training was

also demonstrated in DeepGraphGO [21]

4.6 Complexity

The complexity of training and generating the embeddings of proteins using GCNs

is calculated as O(N ∗F 2+N2 ∗F) [22], while the training time of the GO axiom

embeddings is linear O(epochs * n * m), where n is the number of all axioms, m

is an embedding size and epochs is the number of training iterations. And the

last step, which is generating inferences, takes O(embedding size) time, thus it is

linear in the number of all entities.

28

F
ig
u
re

4.
2:

h
ig
h
-l
ev
el

ov
er
v
ie
w

of
ou

r
p
ro
p
os
ed

m
et
h
o
d
.

Chapter 5

Results and Discussion

The aim of our proposed approach is to utilizes the knowledge embeded in GO

axioms and protein-protein interactions to improve protein function prediction.

This is achieved through jointly generating protein and GO embeddings in the

same continuous space. The hypothesis is that the GO axioms will help improve

the predictions quality and allow for prediction of protein functions for GO classes

whcih do not have any training samples (zero-shot), combining symbolic and neu-

ral AI methods in a single model [23]. We also include protein interactions because

we know proteins do not work in isolation thus this type of knowledge is crucial

especially for two specific domains of GO: the Biological Processes, because BP

terms are used to describe sets of molecular events with a defined beginning and

end, which implies the involvement of multiple (interacting) proteins, and Cellu-

lar Component, which describes the parts of a cell or its extracellular environment

where a protein is, and by intuition, proteins in the same location in the cell are

likely to interact.

The goal of incorporating GCN with other ontology embeddings methods

(TransC and EL Embeddings in the following expermints) is to merge benefits

of GCN in embedding graphs in Rn which is suitable for the ABox part of the

ontology, and the ability of TransC/EL Embeddings to of embed the GO axioms,

the TBox part of the ontology.

Table 5.1 shows the first set of experiments where regular graph-based em-

bedding methods (TransC, GCN) are compared against our proposed approach

(GCN+TransC), which has showed an improvement compared to solely using

TransC due to GCNs having the ability to embed protein sequence features, the

30

protein features were omitted in TransC because the method does not allow for

node features. In comparison with GCN, GCN+TransC shows minor improve-

ments in MF and CC domains, this is due to the fact that our method allows for

GO embeddings while a GCN does not.

in Table 5.2, we compare our proposed methods with current state of the

art DeepGraphGO [21]. The experiments show some improvements in MF and

CC domains, which shows that ontology awareness improves AFP of proteins.

The combination of GCN and EL Embeddings performs better than GCN with

TransC; this is due to the fact that EL Embeddings is more suited to embed

the TBox part of the knowledge base while GCN embeds the ABox, while in

GCN+TransC, TransC is not as suited for embedding TBoxes.

The second set of experiments against current state of the art compares our

methods with DeepGOZero [10] in Table 5.3, which is an ontology aware method.

The results show better performance in all domains. This shows that the in-

corporation of protein interactions knowledge improves performance for AFP of

proteins.

Moreover, all models perform significantly worse in the BP sub-ontology than

in the MF and CC sub-ontologies This is consistent with the CAFA findings,

which may be attributed to the following factors mentioned in [21]:

• BP has much more GO terms and higher depths than MF

and CC;

• the BP terms are considered to be more abstract in nature than

MF and CC terms;

• BP may have complicated annotation status such as the annota-

tion depth of benchmark proteins and various annotation biases.

31

Method F-max S-min AURP
MFO BPO CCO MFO BPO CCO MFO BPO CCO

TransC 0.535 0.431 0.631 12.459 45.699 11.021 0.524 0.398 0.650
GCN 0.590 0.467 0.663 11.074 43.303 10.582 0.597 0.442 0.675
RGCN+
TransC

0.595 0.442 0.685 11.590 45.198 9.395 0.599 0.424 0.701

Table 5.1: Comparison of performance against graph-based embedding ap-
proaches

Method F-max S-min AURP
MFO BPO CCO MFO BPO CCO MFO BPO CCO

DGG 0.590 0.467 0.663 11.074 43.303 10.582 0.597 0.442 0.675
RGCN+
TransC

0.595 0.442 0.685 11.590 45.198 9.395 0.599 0.424 0.701

RGCN+
EL
emb

0.641 0.459 0.688 10.148 45.091 11.183 0.652 0.433 0.721

Table 5.2: Comparison of proposed methods against DeepGraphGO

Method
F-max S-min AURP
MFO BPO CCO MFO BPO CCO MFO BPO CCO

DGZ 0.635 0.446 0.662 11.748 51.413 10.617 0.625 0.414 0.653
RGCN+
TransC

0.595 0.442 0.685 11.590 45.198 9.395 0.599 0.424 0.701

RGCN+
EL
emb

0.641 0.459 0.688 10.148 45.091 11.183 0.652 0.433 0.721

Table 5.3: Comparison of proposed methods against DeepGOZero

32

Method
F-max S-min AURP
MFO BPO CCO MFO BPO CCO MFO BPO CCO

GCN 0.590 0.431 0.631 11.748 51.413 10.617 0.625 0.414 0.653
RGCN 0.595 0.442 0.685 11.590 45.198 9.395 0.599 0.424 0.701

Table 5.4: Comparison of performance of GCN and RGCN in proposed method

5.1 Hyperparameters analysis

For hyperparameter tuning, we test for the appropriate number of embedding

dimensions, ranging from 64 up to 2024 dimensions. The performance was im-

proved slightly with the increase in dimensions but the space complexity suffered.

MF and BP also show a stall in perfomance after 1024 dimensions.

We also compared the use of a regular GCN layer against a RGCN layer in

our approach, where in the RGCN, for each type of interaction between proteins,

a different weight matrix would be considered. This showed some improvement

compared to GCN which only considers one type of relation.

Figure 5.1: The performance slightly improves after increasing embedding dimen-
sions

Chapter 6

Concluding Remarks

To understand the process of life, it is crucial for us to study proteins and their

functions. Proteins execute (almost) all cellular activities and their functions are

standardized by Gene Ontology (GO). The amount of discovered sequences of

proteins grows exponentially as a consequence of the fast rate of development

of technologies in gene sequencing. To reduce this wide gap, developing an ef-

ficient and effective method for automatic protein function prediction (AFP) is

important. Many approaches have been proposed for solving the AFP problem,

but these methods suffer from limitations in the way the knowledge of the do-

main is presented. In this work, I formulate the task of AFP as an entailment

problem and exploit the structure of the related knowledge in a set and reusable

framework. We aimed to answer some research questions including: How does

ontology awareness affect performance of AFP? does inclusion of protein inter-

action knowledge improve performance of AFP? and what is the best way to

combine ontology embedding methods suited for the problem of protein function

prediction?.

Our experiments show that ontology awareness improves protein function pre-

diction, and combining an embedding method that is suited for the graph struc-

ture (ABox) and the ontology structure (TBox) of the knowledge base yields

the best results. We also demonstrated how protein-protein interactions add

valuable knowledge that allows for better performance overall. To improve our

method, more experiments considering different protein knowledge, such as pro-

tein structure, should be considered, and even implementing other Deep Learning

architectures. The main limitation we faced was that both ontology embedding

34

methods we experminted with (TransC, EL Embeddings) were similar due to the

fact that they are both translational approaches. In future work, we will consider

different methods that are better suited for this large-domain problem.

35

REFERENCES

[1] R. Apweiler, A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro,

E. Gasteiger, H. Huang, R. Lopez, M. Magrane et al., “Uniprot: the universal

protein knowledgebase,” Nucleic acids research, vol. 32, no. suppl 1, pp.

D115–D119, 2004.

[2] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,

A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig et al., “Gene ontology:

tool for the unification of biology,” Nature genetics, vol. 25, no. 1, pp. 25–29,

2000.

[3] M. Kulmanov and R. Hoehndorf, “Deepgoplus: improved protein function

prediction from sequence,” Bioinformatics, vol. 36, no. 2, pp. 422–429, 2020.

[4] A. L. Mitchell, T. K. Attwood, P. C. Babbitt, M. Blum, P. Bork, A. Bridge,

S. D. Brown, H.-Y. Chang, S. El-Gebali, M. I. Fraser et al., “Interpro in

2019: improving coverage, classification and access to protein sequence an-

notations,” Nucleic acids research, vol. 47, no. D1, pp. D351–D360, 2019.

[5] M. E. Oates, J. Stahlhacke, D. V. Vavoulis, B. Smithers, O. J. Rackham, A. J.

Sardar, J. Zaucha, N. Thurlby, H. Fang, and J. Gough, “The superfamily

1.75 database in 2014: a doubling of data,” Nucleic acids research, vol. 43,

no. D1, pp. D227–D233, 2015.

[6] R. D. Finn, P. Coggill, R. Y. Eberhardt, S. R. Eddy, J. Mistry, A. L. Mitchell,

S. C. Potter, M. Punta, M. Qureshi, A. Sangrador-Vegas et al., “The pfam

protein families database: towards a more sustainable future,” Nucleic acids

research, vol. 44, no. D1, pp. D279–D285, 2016.

[7] T. E. Lewis, I. Sillitoe, N. Dawson, S. D. Lam, T. Clarke, D. Lee, C. Orengo,

and J. Lees, “Gene3d: extensive prediction of globular domains in proteins,”

Nucleic acids research, vol. 46, no. D1, pp. D435–D439, 2018.

[8] A. Marchler-Bauer, Y. Bo, L. Han, J. He, C. J. Lanczycki, S. Lu, F. Chitsaz,

M. K. Derbyshire, R. C. Geer, N. R. Gonzales et al., “Cdd/sparcle: func-

tional classification of proteins via subfamily domain architectures,” Nucleic

acids research, vol. 45, no. D1, pp. D200–D203, 2017.

[9] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and

M. Sun, “Graph neural networks: A review of methods and applications,”

2018. [Online]. Available: https://arxiv.org/abs/1812.08434

https://arxiv.org/abs/1812.08434

36

[10] M. Kulmanov and R. Hoehndorf, “Deepgozero: Improving protein function

prediction from sequence and zero-shot learning based on ontology axioms,”

bioRxiv, 2022.

[11] J. Mira and A. Delgado, “Where is knowledge in robotics? some methodolog-

ical issues on symbolic and connectionist perspectives of ai,” in Autonomous

robotic systems. Springer, 2003, pp. 3–34.

[12] M. Kulmanov, W. Liu-Wei, Y. Yan, and R. Hoehndorf, “El embeddings: geo-

metric construction of models for the description logic el++,” arXiv preprint

arXiv:1902.10499, 2019.

[13] A. Franceschini, D. Szklarczyk, S. Frankild, M. Kuhn, M. Simonovic,

A. Roth, J. Lin, P. Minguez, P. Bork, C. Von Mering et al., “String v9.

1: protein-protein interaction networks, with increased coverage and inte-

gration,” Nucleic acids research, vol. 41, no. D1, pp. D808–D815, 2012.

[14] X. Lv, L. Hou, J. Li, and Z. Liu, “Differentiating concepts and

instances for knowledge graph embedding,” 2018. [Online]. Available:

https://arxiv.org/abs/1811.04588

[15] M. Welling and T. N. Kipf, “Semi-supervised classification with graph con-

volutional networks,” in J. International Conference on Learning Represen-

tations (ICLR 2017), 2016.

[16] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and

M. Welling, “Modeling relational data with graph convolutional networks,”

in European semantic web conference. Springer, 2018, pp. 593–607.

[17] T. Thanapalasingam, L. van Berkel, P. Bloem, and P. Groth, “Relational

graph convolutional networks: a closer look,” PeerJ Computer Science,

vol. 8, p. e1073, 2022.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[19] P. Radivojac, W. T. Clark, T. R. Oron, A. M. Schnoes, T. Wittkop,

A. Sokolov, K. Graim, C. Funk, K. Verspoor, A. Ben-Hur et al., “A large-

scale evaluation of computational protein function prediction,” Nature meth-

ods, vol. 10, no. 3, pp. 221–227, 2013.

[20] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning

on large graphs,” Advances in neural information processing systems, vol. 30,

2017.

https://arxiv.org/abs/1811.04588

37

[21] R. You, S. Yao, H. Mamitsuka, and S. Zhu, “Deepgraphgo: graph neural

network for large-scale, multispecies protein function prediction,” Bioinfor-

matics, vol. 37, no. Supplement 1, pp. i262–i271, 2021.

[22] D. Blakely, J. Lanchantin, and Y. Qi, “Time and space complexity of graph

convolutional networks,” Accessed on: Dec, vol. 31, 2021.

[23] J. Mira, A. Delgado, and M. Taboada, “Neurosymbolic integration: The

knowledge level approach,” in International Conference on Computer Aided

Systems Theory. Springer, 2003, pp. 460–470.

	Abstract
	Acknowledgements
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Background
	Related Work
	AFP with no ontology awareness
	AFP with ontology awareness

	Materials and Methods
	Problem formulation
	Basic definitions

	Embedding ontologies
	Overview
	Performance evaluation
	Model training settings
	Complexity

	Results and Discussion
	Hyperparameters analysis

	Concluding Remarks
	References

